A simple algorithm and min–max formula for the inverse arborescence problem

نویسندگان

چکیده

Abstract In 1998, Hu and Liu developed a strongly polynomial algorithm for solving the inverse arborescence problem that aims at minimally modifying given cost-function on edge-set of digraph D so an input spanning becomes cheapest one. this note, we develop conceptually simpler along with new min–max formula minimum modification cost-function. The approach is based link to theorem simple (two-phase greedy) by first author from 1979 concerning primal optimization finding subgraph covers intersecting family corresponding dual problem, as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Strongly Polynomial Algorithm for the Inverse Shortest Arborescence Problem

In this paper an inverse problem of the weighted shortest arborescence problem is discussed. That is. given a directed graph G and a set of nonnegative costs on its arcs. we need to modify those costs as little as possible to ensure that T, a given (.I-arborescence of G, is the shortest one. It is found that only the cost of T needs modifying. An O(rz”) combinatorial algorithm is then proposed....

متن کامل

A simple algorithm for the inverse field of values problem

The field of values of a matrix is the closed convex subset of the complex plane comprising all Rayleigh quotients, a set of interest in the stability analysis of dynamical systems and convergence theory of matrix iterations, among other applications. Recently, Uhlig proposed the inverse field of values problem: given a point in the field of values, determine a vector for which this point is th...

متن کامل

The Gilbert arborescence problem

We investigate the problem of designing a minimum-cost flow network interconnecting n sources and a single sink, each with known locations in a normed space and with associated flow demands. The network may contain any finite number of additional unprescribed nodes from the space; these are known as the Steiner points. For concave increasing cost functions, a minimum cost network of this sort h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2021

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2021.02.027